Dictionary based Image Compression via Sparse Representation
نویسندگان
چکیده
منابع مشابه
Image Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملWavelet Based Image Compression Using Sparse Representation and Vector Quantization
Ordinary images, as well as most natural and manmade signals, are compressible and can, therefore, be well represented in a domain in which the signal is sparse. Sparse signal representations have found use in a large number of applications including image compression. Inspired by recent theoretical advances in sparse representation, we propose an image compression using wavelet, sparse represe...
متن کاملLow Bit Rate SAR Image Compression Based on Sparse Representation
Synthetic aperture radar (SAR) is an active remote sensing tool operating in the microwave range of the electromagnetic spectrum. It uses the motion of the radar transmitter to synthesize an antenna aperture much larger than the actual antenna aperture in order to yield high spatial resolution radar images (Curlander & McDonough, 1991). It has been applied to military survey, terrain mapping, a...
متن کاملSparse Representation based Fingerprint Compression
Recognition of people by means of their biometric characteristics is very popular among the society. There are various biometric techniques including fingerprint recognition, face recognition and eye detection that are used for the privacy and security purposes in different applications. Among all these techniques, fingerprint recognition has gain more popularity for personal identification due...
متن کاملSparse Signal Representation: Image Compression using Sparse Bayesian Learning
with Φ ∈ RN×M , M ≥ N , and some noise . The challenge is to determine the sparsest representation of reconstruction coefficients w = [w1, . . . , wM ] . Finding a sparse representation of a signal in an overcomplete dictionary is equivalent to solving a regularized linear inverse. For a given dictionary Φ, finding the maximally sparse w is an NP-hard problem [1]. A great deal of recent researc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Electrical and Computer Engineering (IJECE)
سال: 2017
ISSN: 2088-8708,2088-8708
DOI: 10.11591/ijece.v7i4.pp1964-1972